将n换为x
即求:lim[x→+∞] x^(1/x)
=lim[x→+∞] e^[(1/x)lnx]
=e^[lim[x→+∞] (1/x)lnx]
洛必达法则
=e^[lim[x→+∞] (1/x)]
=e^0
=1
而n^(1/n)可以看作上面函数极限的一个子列,因此
lim[n→∞] n^(1/n)=1
扩展资料:
在运用洛必达法则之前,首先要完成两项任务:
一是分子分母的极限是否都等于零(或者无穷大);
二是分子分母在限定的区域内是否分别可导。
如果这两个条件都满足,接着求导并判断求导之后的极限是否存在:如果存在,直接得到答案;如果不存在,则说明此种未定式不可用洛必达法则来解决;如果不确定,即结果仍然为未定式,再在验证的基础上继续使用洛必达法则。