一阶齐次线性微分方程的通解是什么?

 我来答
我爱学习112
高粉答主

2021-04-12 · 每个回答都超有意思的
知道大有可为答主
回答量:7259
采纳率:100%
帮助的人:162万
展开全部

举例说明:(x-2)*dy/dx=y 2*(x-2)^3

解:

∵(x-2)*dy/dx=y 2*(x-2)³ 

(x-2)dy=[y 2*(x-2)³]dx 

(x-2)dy-ydx=2*(x-2)³dx

[(x-2)dy-ydx]/(x-2)²=2*(x-2)dx

d[y/(x-2)]=d[(x-2)²] 

y/(x-2)=(x-2)² C   (C是积分常数)         

y=(x-2)³ C(x-2)      

∴原方程的通解是y=(x-2)³ C(x-2)(C是积分常数)。

扩展资料

解的特点:

一阶齐次:两个解的和还是解,一个解乘以一个常数还是解;

一阶非齐次:两个解的差是齐次方程的解,非齐次方程的一个解加上齐次方程的一个解还是非齐次方程的解。

通解的结构:

一阶齐次:y=Cy1,y1是齐次方程的一个非零解;

一阶非齐次:y=y*+Cy1,其中y*是非齐次方程的一个特解,y1是相应的齐次方程的一个非零特解。

摩羯小鱼儿1127
2021-04-12 · TA获得超过8169个赞
知道答主
回答量:263
采纳率:100%
帮助的人:3.9万
展开全部

举例说明:(x-2)*dy/dx=y 2*(x-2)^3

解:

∵(x-2)*dy/dx=y 2*(x-2)³

(x-2)dy=[y 2*(x-2)³]dx

(x-2)dy-ydx=2*(x-2)³dx

[(x-2)dy-ydx]/(x-2)²=2*(x-2)dx

d[y/(x-2)]=d[(x-2)²]

y/(x-2)=(x-2)² C   (C是积分常数)

y=(x-2)³ C(x-2)

∴原方程的通解是y=(x-2)³ C(x-2)(C是积分常数)。

扩展资料:

一阶线性微分方程的定义:

关于未知函数y及其一阶导数的一次方程,称之为一阶线性微分方程。

1、写出对应于非齐次线性方程的齐次线性方程,求出该齐次线性方程的通解。

2、通过常数易变法,求出非齐次线性方程的通解。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式