集合的性质有哪三个?
确定性、互异性、无序性为集合的三个特性。
确定性:对于任意一个元素,要么它属于某个指定集合,要么它不属于该集合,二者必居其一。
互异性:同一个集合中的元素是互不相同的。
无序性:任意改变集合中元素的排序次序,它们仍然表示同一个集合。
扩展资料:
表示方法
表示集合的方法通常有四种,即列举法、描述法、图像法和符号法。
列举法
列举法就是将集合的元素逐一列举出来的方式。例如,光学中的三原色可以用集合{红,绿,蓝}表示;由四个字母a,b,c,d组成的集合A可用A={a,b,c,d}表示,如此等等。
列举法还包括尽管集合的元素无法一一列举,但可以将它们的变化规律表示出来的情况。如正整数集和整数集可以分别表示为和。
描述法
描述法的形式为{代表元素|满足的性质}。
设集合S是由具有某种性质P的元素全体所构成的,则可以采用描述集合中元素公共属性的方法来表示集合:S={x|P(x)}。例如,由2的平方根组成的集合B可表示为B={x|x2=2}。
图像法
图像法,又称韦恩图法、韦氏图法,是一种利用二维平面上的点集表示集合的方法。一般用平面上的矩形或圆形表示一个集合,是集合的一种直观的图形表示法。
符号法
有些集合可以用一些特殊符号表示,举例如下:
N:非负整数集合或自然数集合{0,1,2,3,…}
N*或N+:正整数集合{1,2,3,…}
Z:整数集合{…,-1,0,1,…}
Q:有理数集合
Q+:正有理数集合
参考资料来源:百度百科-集合