电子是如何发现的?
电子是在1897年由剑桥大学卡文迪许实验室的约瑟夫·约翰·汤姆森在研究阴极射线时发现的。
1897年,英国剑桥大学卡文迪许实验室的约瑟夫·约翰·汤姆森重做了赫兹的实验。使用真空度更高的真空管和更强的电场,他观察出负极射线的偏转,并计算出负级射线粒子(电子)的质量-电荷比例,因此获得了1906年的诺贝尔物理学奖。
汤姆逊采用1891年乔治·斯托尼所起的名字——电子来称呼这种粒子。至此,电子作为人类发现的第一个亚原子粒子和打开原子世界的大门被汤姆逊发现了。
扩展资料
物理学家现在已经证明可以通过电学手段控制磁性半导体中的磁性,为新型自旋电子器件铺平了道路。半导体是信息处理技术的核心,以晶体管的形式,半导体充当电荷的开关,允许在二进制状态0和1之间切换。
另一方面,磁性材料是信息存储设备的重要部件。研究利用电子的自旋自由度来实现记忆功能。磁性半导体是一类独特的材料,可以同时控制电荷和自旋,有可能在单一平台上实现信息处理和存储操作。
参考资料来源:百度百科-电子
2024-12-04 广告
电子是在1897年由剑桥大学卡文迪许实验室的约瑟夫·约翰·汤姆森在研究阴极射线时发现的。
1897年,英国剑桥大学卡文迪许实验室的约瑟夫·约翰·汤姆森重做了赫兹的实验。使用真空度更高的真空管和更强的电场,他观察出负极射线的偏转,并计算出负级射线粒子(电子)的质量-电荷比例,因此获得了1906年的诺贝尔物理学奖。
汤姆逊采用1891年乔治·斯托尼所起的名字——电子来称呼这种粒子。至此,电子作为人类发现的第一个亚原子粒子和打开原子世界的大门被汤姆逊发现了。
扩展资料
1、电子的应用
电子的应用领域很多,像电子束焊接、阴极射线管、电子显微镜、放射线治疗、激光和粒子加速器等等。在实验室里,精密的尖端仪器,像四极离子,可以长时间约束电子,以供观察和测量。大型托卡马克设施,像国际热核聚变实验反应堆,借着约束电子和离子等离子体,来实现受控核聚变。
在一次美国国家航空航天局的风洞试验中,电子束射向航天飞机的迷你模型,模拟返回大气层时,航天飞机四周的游离气体。
2、电子的发现过程
19世纪末,许多科学家都研究阴极射线。原因是对它的本质还没搞清。这么多的科学家研究阴极射线,为什么他们不能发现阴极射线是带负电的颗粒呢?原因是,只要在阴极射线管内有一定的气体,当阴极射线通过时,这些气体就变成导体而使阴极射线受到屏蔽,令它不受电场或磁场的影晌。
1897年汤姆森把阴极射线管内抽到残留的气体很少,当阴极射线通过时把原来过多气体变成导体的屏蔽效应消除。他就可以看见阴极射线受到磁场(电场)的偏转。这表示阴极射线是带负电的粒子。这样,汤姆森研究阴极射线实际就是研究带负电颗粒的远动。
1899年汤姆森从电(磁)场的强度,颗粒运动的速度和偏转的角度,就可以测出电子的质量以及它所带的电荷。汤姆森得出结论是,他所发现的带负电的颗粒比最轻的原子都要轻一千倍,它是原子的组成元素。后来,科学家把它称为电子。汤姆森提出,电子是分布在正电的海中的“葡萄干布丁”原子模型。
1897年由英国物理学家约瑟夫·约翰·汤姆生在研究阴极射线时发现电子。一切原子都由一个带正电的原子核和围绕它运动的若干电子组成。电荷的定向运动形成电流,如金属导线中的电流。
利用电场和磁场,能按照需要控制电子的运动(在固体、真空中),从而制造出各种电子仪器和元件,如各种电子管、电子显微镜等。电子的波动性于1927年由晶体衍射实验得到证实。
扩展资料:
电子的性质特征
电子被归在亚原子粒子中的轻子类。轻子是物质被划分的作为基本粒子的一类。电子带有二分之一自旋,满足费米子的条件(按照费米-狄拉克统计)。电子所带电荷约为-1.6×10-19库仑,质量为9.10956×10-31kg(0.51MeV/c2)。
通常被表示为e⁻。与电子电性相反的粒子被称为正电子,它带有与电子相同的质量,自旋和等量的正电荷。电子在原子内做绕核运动,能量越大距核运动的轨迹越远,有电子运动的空间叫电子层,第一层最多可有2个电子。
第二层最多可以有8个,第n层最多可容纳2n2个电子,最外层最多容纳8个电子。最后一层的电子数量决定物质的化学性质是否活泼,1、2、3电子为金属元素,4、5、6、7为非金属元素,8为稀有气体元素。