不包含于的符号是什么?
“不含于”符号就是“不包含于“符号“¢”。
不包含于是两个完全不一样的集合。例如:A={1,2,3},B={7,8,9}那么可以说A不含于B,B不包含A。
如“S是P而且P是S”(即S与P在外延上为全同关系),可以说S与P和P与S均有包含于关系,但不能说它们有真包含于关系。只有当“凡S是P而且有P不是S”时,S才真包含于P,S与P才有真包含于关系。而S与P有包含于关系则仅要求“凡S是P”、而并不要求“有P不是S”。
扩展资料
元素与集合的关系有“属于(∈、∋)”与“不属于(∉、∌)”两种。
集合的分类:
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}
例如,全集U={1,2,3,5} A={1,3,5} B={1,2,5} 。
它们两个集合中含有1,2,3,5这4个元素,不管元素的出现次数,只要元素出现在这两个集合中。那么说A∪B={1,2,3,5}。 阴影部分就是A∩B。
不包含的符号:⊄。
不包含是含于的符号去掉下面的“一”,再加上-条斜线。
不包含是两个完全不一样的集合。例如:A={1,2,3},B={7,8,9}那么可以说A不含于B,B不包含A
数学符号的发明及使用比数字要晚,但其数量却超过了数字。现在常用的数学符号已超过了200个,其中,每一个符号都有一段有趣的经历。
扩展资料:
每一个对象都能确定是不是某一集合的元素,没有确定性就不能成为集合,例如“个子高的同学”“很小的数”都不能构成集合。这个性质主要用于判断一个集合是否能形成集合。
如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。