满秩矩阵的行列式为零是什么?
展开全部
矩阵满秩行列式为0。因为满秩,说明方阵的各行向量(或列向量)线性相,而行向量线性相关,就说明至少有一行可以由其他行乘系数相加得到,这根据行列式的性质可知,这样的行列式为0。
设A是n阶矩阵,若r(A)=n,则称A为满秩矩阵。但满秩不局限于n阶矩阵。若矩阵秩等于行数,称为行满秩;若矩阵秩等于列数,称为列满秩。
既是行满秩又是列满秩则为n阶矩阵即n阶方阵。行满秩矩阵就是行向量线性无关,列满秩矩阵就是列向量线性无关;所以如果是方阵,行满秩矩阵与列满秩矩阵是等价的。
单位阵
单位阵是单位矩阵的简称,它指的是对角线上都是1,其余元素皆为0的矩阵。
在矩阵的乘法中,有一种矩阵起着特殊的作用,如同数的乘法中的1,我们称这种矩阵为单位矩阵,简称单位阵。它是个方阵,除左上角到右下角的对角线(称为主对角线)上的元素均为1以外全都为0。
可用将系数矩阵转化成单位矩阵的方法解线性方程组。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询