函数通常有三种表示方法
1个回答
展开全部
解析法,图像法。表格法
解析法:并不是所有函数都有解析式,对于类似气温随时间变化的函数是没有解析式的,解析式是为了方便进行数学研究,当然,我们可以通过数学手段对一些东西进行简单的函数拟和,从微积分的角度上来看,任何一小段(小到趋于0)的连续图像都是线性的;
列表法:列表法有两个意义,第一,在已知函数部分性质的情况下,通过表中的数据比较函数的增减性;第二,通过数据进行函数的拟和或者求函数,一般来说,列表只能看到函数的部分情况,而且不能判断函数的性质,当然,在知道函数是什么函数的情况下,列表可以助于求出函数解析式或者是做出函数的图像,列表法是对函数本身损失最大的,因为它丢失了大量的信息,但既然给出的数据列表法也是十分准确的;
图像法:图像法是最直观的,但是也是相对最不准确的,对于连续的函数,可以通过图像看出增减性、零点、顶点、对称轴的大概位置(就是坐标的范围),但是不能求出其具体位置。所有函数都有图像,但并不是所有图像都有函数,比如圆的方程,因为函数要满足一一对应性。在解决线性问题的时候,准确的函数图像可能可以直接让你看出答案。
解析法:并不是所有函数都有解析式,对于类似气温随时间变化的函数是没有解析式的,解析式是为了方便进行数学研究,当然,我们可以通过数学手段对一些东西进行简单的函数拟和,从微积分的角度上来看,任何一小段(小到趋于0)的连续图像都是线性的;
列表法:列表法有两个意义,第一,在已知函数部分性质的情况下,通过表中的数据比较函数的增减性;第二,通过数据进行函数的拟和或者求函数,一般来说,列表只能看到函数的部分情况,而且不能判断函数的性质,当然,在知道函数是什么函数的情况下,列表可以助于求出函数解析式或者是做出函数的图像,列表法是对函数本身损失最大的,因为它丢失了大量的信息,但既然给出的数据列表法也是十分准确的;
图像法:图像法是最直观的,但是也是相对最不准确的,对于连续的函数,可以通过图像看出增减性、零点、顶点、对称轴的大概位置(就是坐标的范围),但是不能求出其具体位置。所有函数都有图像,但并不是所有图像都有函数,比如圆的方程,因为函数要满足一一对应性。在解决线性问题的时候,准确的函数图像可能可以直接让你看出答案。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询