n到2n间有素数的证明错误

 我来答
柠檬不酸加1
2022-03-21 · TA获得超过3222个赞
知道小有建树答主
回答量:2.6万
采纳率:92%
帮助的人:451万
展开全部
素数分布的现象。
2n和n都是连续的,这形成了素数分布的连续体系,该体系包含了所有素数。因为哥猜成立所以素数分布不可计算体系成立,并且与素数分布相关的连续体系也成立,因此该命题只能由哥猜成立而导出,其它任何证明均无效。因为从素数分布不可能证实哥猜,所以我们用该命题不可能证实哥猜。
证明:1、因为哥猜成立,所以不可计算素数分布成立。2、因此哥猜素数分布连续体系成立。3、考察有限连续范围得到n至2n间(包括n)都存在素数。4、根据2得出结果是3的情形在无限域成立则该命题得证实。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式