拉格朗日定理有哪些用途呢?
展开全部
流体力学中的拉格朗日定理
(Lagrange theorem)
由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem), 即漩涡不生不灭定理:
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡。
描述流体运动的两种方法之一:拉格朗日法
拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。
以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。
任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、c)和t的函数
拉格朗日法基本特点: 追踪流体质点的运动
优点: 可直接运用固体力学中质点动力学进行分析
微积分中的拉格朗日定理(拉格朗日中值定理)
设函数f(x)满足条件:
(1)在闭区间〔a,b〕上连续;
(2)在开区间(a,b)可导;
则至少存在一点ε∈(a,b),使得
f(b) - f(a)
f'(ε)=-------------------- 或者
b-a
f(b)=f(a) + f(ε)'(b - a)
[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:1,G(a)=G(b);2.G(x)在[a,b]连续;3.G(x)在(a,b)可导.此即罗尔定理条件,由罗尔定理条件即证]
(Lagrange theorem)
由开尔文定理可直接推论得到拉格朗日定理(Lagrange theorem), 即漩涡不生不灭定理:
正压理想流体在质量力有势的情况下,如果初始时刻某部分流体内无涡,则在此之前或以后的任何时刻中这部分流体皆为无涡。反之,若初始时刻该部分流体有涡,则在此之前或以后的任何时刻中这部分流体皆为有涡。
描述流体运动的两种方法之一:拉格朗日法
拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动。
以某一起始时刻每个质点的坐标位置(a、b、c),作为该质点的标志。
任何时刻任意质点在空间的位置(x、y、z)都可以看成是(a、b、c)和t的函数
拉格朗日法基本特点: 追踪流体质点的运动
优点: 可直接运用固体力学中质点动力学进行分析
微积分中的拉格朗日定理(拉格朗日中值定理)
设函数f(x)满足条件:
(1)在闭区间〔a,b〕上连续;
(2)在开区间(a,b)可导;
则至少存在一点ε∈(a,b),使得
f(b) - f(a)
f'(ε)=-------------------- 或者
b-a
f(b)=f(a) + f(ε)'(b - a)
[证明:把定理里面的c换成x在不定积分得原函数f(x)={[f(b)-f(a)]/(b-a)}x.做辅助函数G(x)=f(x)-{f(b)-f (a)]/(b-a)}x易证明此函数在该区间满足条件:1,G(a)=G(b);2.G(x)在[a,b]连续;3.G(x)在(a,b)可导.此即罗尔定理条件,由罗尔定理条件即证]
Sigma-Aldrich
2018-06-11 广告
2018-06-11 广告
Duolink PLA技术可通过同一个实验即可完成对蛋白质互作及其修饰的检测、定量以及确定细胞定位等。Duolink基于原位PLA技术(即邻位连接分析技术),可以帮助您在内源蛋白质表达过程中进行该分析。...
点击进入详情页
本回答由Sigma-Aldrich提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询