若n为大于1的自然数,求证:1/n+1+1/n+2+…+1/2n>13/24

 我来答
回从凡7561
2022-05-17 · TA获得超过784个赞
知道小有建树答主
回答量:297
采纳率:100%
帮助的人:51.2万
展开全部
n为大于1的自然数
可以用数学归纳法来证:
(1)当n=2时
1/(2+1)+1/(2+2)=1/3+1/4=7/12=14/24>13/24成立
(2)假设当n=k时成立
即:1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)>13/24
那么当n=k+1时
1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)
=1/(k+1)+1/(k+2)+1/(k+1)+---+1/(k+k)+1/(2k+1)+1/(2k+2)-1/(k+1)
>13/24+1/(2k+1)+1/(2k+2)-1/(k+1)
>13/24+1/(2k+2)+1/(2k+2)-2/(2k+2)=13/24
说明当n=k+1时也成立
由(1)(2)可知不等式对于大于1的自然数都成立
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式