正弦定理公式推导
正弦定理公式推导:
1、(1)a=2RsinA;
(2)b=2RsinB;
(3)c=2RsinC。
2、(1)a:b=sinA:sinB;
(2)a:c=sinA:sinC;
(3)b:c=sinB:sinC;
(4)a:b:c=sinA:sinB:sinC。
【注】多用于“边”、“角”间的互化。
3、由“a/sinA=b/sinB=c/sinC=2R”可得:
(1)(a+b)/(sinA+sinB)=2R;
(2)(a+c)/(sinA+sinC)=2R;
(3)(b+c)/(sinB+sinC)=2R;
(4)(a+b+c)/(sinA+sinB+sinC)=2R。
4、三角形ABC中,常用到的几个等价不等式。
(1)“a>b”、“A>B”、“sinA>sinB”,三者间两两等价。
(2)“a+b>c”等价于“sinA+sinB>sinC”。
(3)“a+c>b”等价于“sinA+sinC>sinB”。
(4)“b+c>a”等价于“sinB+sinC>sinA”。
5、三角形△ABC的面积S=(abc)/4R。其中“R”为三角形△ABC的外接圆半径。
余弦定理推论公式
1、cosA=(b^2+c^2-a^2)/2bc;
2、cosB=(a^2+c^2-b^2)/2ac;
3、cosC=(a^2+b^2-c^2)/2ab。
三角形的正弦定理和余弦定理公式及其推论常用来解三角形。对于某些复杂题,需要把正弦定理和余弦定理及其推论综合起来运用。