求解这道数学题,希望能有解题的过程 5
3个回答
展开全部
lim<n→∞> [x/(1+x)]^(x+1/2)
= lim<n→∞> {[1-1/(1+x)]^[-(1+x)]}^[-(x+1/2)/(x+1)]
= e^lim<姿培衡n→∞>[-(x+1/迹做2)/(x+1)]
= e^lim<n→∞>中段[-(1+1/2x)/(1+1/x)] = e^(-1) = 1/e
= lim<n→∞> {[1-1/(1+x)]^[-(1+x)]}^[-(x+1/2)/(x+1)]
= e^lim<姿培衡n→∞>[-(x+1/迹做2)/(x+1)]
= e^lim<n→∞>中段[-(1+1/2x)/(1+1/x)] = e^(-1) = 1/e
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询