关于x,y均大于0且x+y=1,求证(x+1/x)^2+(y+1/y)^2>=25/2

 我来答
华源网络
2022-07-02 · TA获得超过5613个赞
知道小有建树答主
回答量:2486
采纳率:100%
帮助的人:150万
展开全部
证明:
(x+1/x)^2+(y+1/y)^2
≥1/2*[(x+1/x)+(y+1/y)]^2
≥1/2*[(x+y)+(1/x+1/y)]^2
=1/2*(1+1/xy)^2
由题知道:
x+y=1≥2√xy
即:
1/xy≥4
故有:
(x+1/x)^2+(y+1/y)^2
≥1/2*(1+1/xy)^2
≥1/2*(1+4)^2
=25/2
证明完毕!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式