已知:1^2+2^2+3^2+…n^2=1/6n(n+1)(2n+1),求2^2+4^2+6^2+8^2+…+50^2的值

 我来答
机器1718
2022-05-25 · TA获得超过6827个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部
1^2+2^2+…+n^2=1/6n(n+1)(2n+1),
则:
2^2+4^2+…+50^2
=2^2(1^2+2^2+……+25^2)
=22100
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式