连续与可导的关系

 我来答
你即来5344
2022-06-20 · TA获得超过6701个赞
知道大有可为答主
回答量:6263
采纳率:100%
帮助的人:298万
展开全部

可导一定连续,连续不一定可导。连续是可导的必要条件,但不是充分条件,由可导可推出连续,由连续不可以推出可导。可以说:因为可导,所以连续。不能说:因为连续,所以可导。

关于函数的可导导数和连续的关系

1、连续的函数不一定可导。

2、可导的函数是连续的函数。

3、越是高阶可导函数曲线越是光滑。

4、存在处处连续但处处不可导的函数。

左导数和右导数存在且“相等”,才是函数在该点可导的充要条件,不是左极限=右极限(左右极限都存在)。连续是函数的取值,可导是函数的变化率,当然可导是更高一个层次。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式