有理数和无理数的和一定是无理数吗
1个回答
展开全部
一定为无理数。有理数可以化为两整数比(即分数)的形式,而无理数则不能。有理数指整数可以看作分母为1的分数。正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。有理数的小数部分是有限或循环小数。不是有理数的实数遂称为无理数。
无理数
也称为无限不循环小数,不能写作两整数之比。若将它写成小数形式,小数点之后的数字有无限多个,并且不会循环。常见的无理数有非完全平方数的平方根、π。
无理数的另一特征是无限的连分数表达式。传说中,无理数最早由毕达哥拉斯学派弟子希伯斯发现。他以几何方法证明无法用整数及分数表示。而毕达哥拉斯深信任意数均可用整数及分数表示,不相信无理数的存在。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询