八年级数学上册数学公式知识点

 我来答
机器1718
2022-07-24 · TA获得超过6827个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:160万
展开全部

  八年级数学上册数学公式知识点 篇1

  完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。叫做完全平方公式、为了区别,我们把前者叫做两数和的完全平方公式,后者叫做两数差的完全平方公式。(a+b)2=a2+2ab+b2,(a—b)2=a2—2ab+b2。

  (1)公式中的a、b可以是单项式,也就可以是多项式。

  (2)不能直接应用公式的,要善于转化变形,运用公式。

  (一)、变符号

  例:运用完全平方公式计算:

  (1)(—4x+3y)2

  (2)(—a—b)2

  分析:本例改变了公式中a、b的符号,以第二小题为例,处理该问题最简单的方法是将这个式子中的(—a)看成原来公式中的a,将(—b)看成原来公式中的b,即可直接套用公式计算。

  解答:

  (1)16x2—24xy+9y2

  (2)a2+2ab+b2

  (二)、变项数:

  例:计算:(3a+2b+c)2

  分析:完全平方公式的左边是两个相同的二项式相乘,而本例中出现了三项,故应考虑将其中两项结合运用整体思想看成一项,从而化解矛盾。所以在运用公式时,(3a+2b+c)2可先变形为[(3a+2b)+c]2,直接套用公式计算。

  解答:9a2+12ab+6ac+4b2+4bc+c2

  (三)、变结构

  例:运用公式计算:

  (1)(x+y)(2x+2y)

  (2)(a+b)(—a—b)

  (3)(a—b)(b—a)

  分析;本例中所给的均是二项式乘以二项式,表面看外观结构不符合公式特征,但仔细观察易发现,只要将其中一个因式作适当变形就可以了,即

  (1)(x+y)(2x+2y)=2(x+y)2

  (2) (a+b)(—a—b)=—(a+b)2

  (3) (a—b)(b—a)=—(a—b)2

  八年级数学上册数学公式知识点 篇2

  一、全等三角形

  1、定义:能够完全重合的两个三角形叫做全等三角形。

  理解:

  ①全等三角形形状与大小完全相等,与位置无关;

  ②一个三角形经过平移、翻折、旋转可以得到它的全等形;

  ③三角形全等不因位置发生变化而改变。

  2、全等三角形有哪些性质

  (1)全等三角形的对应边相等、对应角相等。

  理解:

  ①长边对长边,短边对短边;最大角对最大角,最小角对最小角;

  ②对应角的'对边为对应边,对应边对的角为对应角。

  (2)全等三角形的周长相等、面积相等。

  (3)全等三角形的对应边上的对应中线、角平分线、高线分别相等。

  3、全等三角形的判定

  边边边:三边对应相等的两个三角形全等(可简写成“SSS”)

  边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”)

  角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”)

  角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”)

  斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”)

  二、角的平分线:

  从一个角的顶点得出一条射线把这个角分成两个相等的角,称这条射线为这个角的平分线。

  1、性质:角的平分线上的点到角的两边的距离相等、

  2、判定:角的内部到角的两边的距离相等的点在角的平分线上。

  三、学习全等三角形应注意以下几个问题:

  (1) 要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;

  (2 表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;

  (3) “有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;

  (4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”

  (5)截长补短法证三角形全等。

  八年级数学上册数学公式知识点 篇3

  一、轴对称图形

  1、 把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。

  2、 把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做对称点

  3、轴对称图形和轴对称的区别与联系

  4、轴对称与轴对称图形的性质

  ① 关于某直线对称的两个图形是全等形。

  ② 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。

  ③ 轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

  ④ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

  ⑤ 两个图形关于某条直线成轴对称,如果它们的对应线段或延长线相交,那么交点在对称轴上。

  二、线段的垂直平分线

  1、定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。

  2、性质:线段垂直平分线上的点与这条线段的两个端点的距离相等

  3、判定:与一条线段两个端点距离相等的点,在线段的垂直平分线上

  三、用坐标表示轴对称小结:

  在平面直角坐标系中

  ①关于x轴对称的点横坐标相等,纵坐标互为相反数;

  ②关于y轴对称的点横坐标互为相反数,纵坐标相等;

  ③关于原点对称的点横坐标和纵坐标互为相反数;

  ④与X轴或Y轴平行的直线的两个点横(纵)坐标的关系;

  ⑤关于与直线X=C或Y=C对称的坐标

  点(x, y)关于x轴对称的点的坐标为_ (x, —y)_____、

  点(x, y)关于y轴对称的点的坐标为___(—x, y)___、

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式