导数放缩法常用不等式有哪些?

 我来答
哆啦聊教育
高粉答主

2022-04-08 · 说的都是干货,快来关注
知道小有建树答主
回答量:4803
采纳率:100%
帮助的人:80.4万
展开全部

导数放缩法常用不等式有如下:

1、地位同等要同构,主要针对双变量:方程组上下同构,合二为一泰山移。

f(x1)-f(x2)/x1-x2>k(x1<x2) 。

f(x1)-f(x2)< kx1-kx2 。

f(x1)-kx1< f(x2)-kxz 。

y=f(x)-kx为增函数。

f(x1)-f(x2)/x1-x2<(k/x1x2(x1<x2)。

f(x1)-f(x2)>k(x1-x2)/x1x2=k/x2-k/x1。

f(x1)+k/x1>f(x2)+k/x2→y=f(x)+k/x为减函数。

含有地位同等的两个变量x1,x2,或p,q等不等式进行“尘归尘,土归土”式的整理,是一种常见变形,如果整理(即同构)后不等式两边具有结构的一致性,往往暗示单调性(需要预先设定两个变量的大小)。

2、指对跨阶想同构,同左同右取对数。同构基本模式。

积型:aea≤blnb三种网构方式。

同右:elnea≤bInb→f(x)=xInx。

同左::aea≤(lnb)elnb→f(x)=xex。

取对:a+Ina≤Inb+In(lnb)→f(x)=x+Inx。

3、同构放缩需有方,切放同构一起上,这个是对同构思想方法的一个灵活运用。【放缩也是一种能力】,利用切线放缩,往往需要局部同构。【利用切线放缩如同用均值不等式,只要取等号的条件成立即可】。掌握常见放缩:(注意取等号的条件,以及常见变形)。

ex≥x+1→ex-1≥x→ex≥ex=ex≥e2/4x2。

ex≥1+x+x2/2。

ex≤2+x/2-x(0≤x< 2)。

ex≥ax+1(x≥0,0<a≤1)。

对解决指对混合不等式问题,如恒成立求参数取值范围,或证明不等式,都带来极大的便利。当然,在具体使用中,往往要结合切线放缩,或换元法。可以说掌握了这些变形新宠及常见切线型不等式,就大大降低了这类问题的难度。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式