求解高数作业 20

 我来答
柯如南yW

2021-11-27 · TA获得超过2010个赞
知道小有建树答主
回答量:5115
采纳率:44%
帮助的人:198万
展开全部
导必定连续,所以要先证明连续.
x→0时,因为sin1/x有界,x²→0,所以x²sin1/x→0,lim(x→0) f(x)=0=f(0),所以f(x)在x=0处连续.
而f ′+(0)=lim(x→0+)( f(x)-f(0))/(x-0)=lim(x→0+)xsin1/x=0
f ′﹣(0)=lim(x→0﹣)( f(x)-f(0))/(x-0)=lim(x→0﹣)xsin1/x=0
所以f ′﹣(0)=f ′+(0),所以f ′(0)存在,因此f(x)在x=0处可导可导必定连续,所以要先证明连续.
x→0时,因为sin1/x有界,x²→0,所以x²sin1/x→0,lim(x→0) f(x)=0=f(0),所以f(x)在x=0处连续.
而f ′+(0)=lim(x→0+)( f(x)-f(0))/(x-0)=lim(x→0+)xsin1/x=0
f ′﹣(0)=lim(x→0﹣)( f(x)-f(0))/(x-0)=lim(x→0﹣)xsin1/x=0
所以f ′﹣(0)=f ′+(0),所以f ′(0)存在,因此f(x)在x=0处可导
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式