高数一道极限题 证明(1+x)的1/n次方在x趋于零时的极限值为1. 我来答 1个回答 #热议# 不吃早饭真的会得胆结石吗? 新科技17 2022-05-22 · TA获得超过5911个赞 知道小有建树答主 回答量:355 采纳率:100% 帮助的人:75.4万 我也去答题访问个人页 关注 展开全部 用个夹逼定理,x>0时,它介于1与1+1/n*x之间;x<0时,它介于1+1/n*x与1之间.所以极限是1. 用定义的话,因为|f(x)-A|≤1/n*|x|,所以由|f(x)-A|<ε得|x|<nε,只要让去心邻域的半径δ≤nε即可. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: