北师大版八年级数学下册教案汇总

 我来答
四季教育17
2022-06-23 · TA获得超过5669个赞
知道大有可为答主
回答量:5408
采纳率:99%
帮助的人:267万
展开全部
  教案是 八年级 数学教师以课时或课题为单位对教学内容、教学步骤、 教学 方法 等进行具体的安排、设计的一种教学文书。下面是我为大家精心整理的北师大版八年级数学下册的教案,仅供参考。
  北师大版八年级数学下册教案设计
  一、教学目标

  (一)教学知识点

  1.掌握三角形相似的判定方法2、3.

  2.会用相似三角形的判定方法2、3来判断、证明及计算.

  (二)能力训练要求

  1.通过自己动手并 总结 推出相似三角形的判定方法2、3,培养学生的动手操作能力,总结概括能力.

  2.利用相似三角形的判定方法2、3进行判断,训练学生的灵活运用能力.

  (三)情感与价值观要求

  1.通过探索相似三角形的判定方法2、3,体现数学活动充满着探索性和创造性.

  2.通过对判定方法的探索,发展学生思维的灵活性,进一步培养逻辑推理能力,领会分类思想.

  二、教学重难点

  教学重点:相似三角形判定方法2、3的推导过程,掌握判定方法2、3并能灵活运用. 教学难点:判定方法的推导及运用

  三、教学过程设计

  (一)创设情境,引入新课

  投影片

  [生]有四对相似三角形,它们是△AEF∽△DEC,△AFB∽△ACD,△AEB∽△CED,△AEF∽△EBA. 他们相似的理由都是用相似三角形的判定方法1.

  [师]现在我们已经有两种方法可以判定两个三角形相似,一种是定义,一种是判定方法1,除此之外,是否还有其他的办法来判定两个三角形相似?这一问题就是本节课我们需要研究的问题.

  (二)新课讲授

  [师]相似三角形的判定方法1是只从角的方面考虑的,下面我们只从边的方面去考虑.我们在学习全等三角形的判定方法中,也有只用边来进行判断的,即SSS公理.大家能不能用类比的方法,猜想只用边来判定三角形相似的方法呢?

  [生]三边对应成比例的两个三角形相似.

  [师]下面我们就来验证一下.

  1.相似三角形的判定方法2:三边对应成比例的两个三角形相似.

  投影片

  个组取一个相同的k值,不同的组取不同的k值,好吗?

  [生]好.

  [师]经过大家的亲身参与体会,你们得出的结论是什么呢?

  [生]结论为∠A=∠A′,∠B=∠B′,∠C=∠C′

  △ABC∽△A′B′C′,理由是:

  ∠A=∠A′,∠B=∠B′,∠C=∠C′

  根据相似三角形的定义可知:△ABC∽△A′B′C′.

  [师]其他组的同学的结论相同吗?

  [生]相同.

  [师]经过大家的探讨,我们又掌握了一种相似三角形的判定方法,即三边对应成比例的两个三角形相似.

  2.相似三角形的判定方法3.

  [师]前面两种判定方法我们都是只从角或只从边的方面去考虑的,下面我们要从两方面来考虑.还是要类比全等三角形的判定方法,在全等的判定方法中有ASA,SAS,AAS,其中ASA、AAS我们就不用考虑了,因为我们已经有判定方法1、3,下面来验证SAS,大家还是先猜想,然后再验证.

  [生]两边对应成比例且夹角相等的两个三角形相似.

  [师]好,下面我们还是由大家自己推导吧.请看投影片

  [师]请大家按照上面的步骤进行,同时还要采取不同的组取不同的值法.

  [生]按照要求作出的△ABC与△A′B′C′中,有∠B=∠B′,∠C=∠C′,因此根据判定方法1可知,△ABC∽△A′B′C′.

  [师]大家同意吗?

  [生]同意.

  [师]好,我们又探索出一个相似三角形的判定方法,即两边对应成比例且夹角相等的两个三角形相似.

  3.想一想

  107

  [师]下面验证SSA,即两边对应成比例,其中一边的对角对应相等,这两个三角形相似吗?

  在全等三角形的判定中SSA就不成立.大家还可以仿照上面的验证过程来进行推导,下面是小明和小颖分别画出的一个满足条件的三角形,由此你能得到什么结论?

  [生]从上面的图中可以得出结论:有两边对应成比例,其中一边的对角相等的三角形不相似.

  4.做一做

  [师]在这两节课中我们已经学完了一般相似三角形的判定方法,下面请大家总结一下有几种方法.

  [生]一共有四种方法.

  第一种:对应角相等,对应边成比例的两个三角形相似.即定义法.

  第二种:即判定方法1

  两角对应相等的两个三角形相似.

  第三种:即判定方法2

  三边对应成比例的两个三角形相似.

  第四种:即判定方法3

  两边对应成比例且夹角相等的两个三角形相似.

  [师]从这四种方法中我们可以看出,第一种判定方法比较麻烦,需要研究三对角、三对边,而后面的几种方法最多只需要研究三对边或角,因此定义法一般不利用.如果已知条件只涉及角,就用第二种判定方法;如果已知条件只涉及边,就用第三种判定方法;如果既有角又有边,则可考虑用第四种方法判断.

  5.议一议

  如图,△ABC与△A′B′C′相似吗?你有哪些判断方法?

  [生]解:△ABC∽△A′B′C′.

  判断方法有.

  1.三边对应成比例的两个三角形相似.

  2.两角对应相等的两个三角形相似.

  3.两边对应成比例且夹角相等.

  4.定义法.

  (三)巩固应用,拓展研究

  下面每组的两个三角形是否相似?为什么?

  生]解:(1)△ABC∽△DEF

  ∵

  ∴△ABC∽△DEF

  (2)在△ABC中

  AB=2,AC=6

  ∵∠A=∠A

  ∴△ABC∽△AEF

  (四)练习巩固,促进迁移

  依据下列各组条件,判定△ABC与△A′B′C′是不是相似,并说明为什么.

  (1)∠A=120°,AB=7 cm,AC=14 cm,

  ∠A′=120°,A′B′=3 cm,A′C′=6 cm,

  (2)AB=4 cm,BC=6 cm,AC=8 cm,

  A′B′=12 cm,B′C′=18 cm,A′C′=24 cm. 解:

  又∵∠A=∠A′

  ∴△ABC∽△A′B′C′(两边对应成比例且夹角相等,两三角形相似)

  (2)

  ∴△ABC∽△A′B′C′(三边对应成比例,两三角形相似)

  (五)回顾联系,形成结构

  本节课主要探讨了相似三角形的另两种判定方法,即三边对应成比例与两边对应成比例且夹角相等的两个三角形相似.培养了大家的探索精神,同时让学生懂得了数学活动充满着探索与创新,学习的目的是能运用学过的知识去解决问题,在这里就是能利用判定方法进行有关证明.
  八年级数学教学计划
  一、制定计划的目的

  为使学生学好代数、几何的基础知识,具备当代社会中每一位公民适应日常生活、参加社会生产和进一步学习所必需的基本技能,进一步培养学生运算能力、发展思维能力和空间观念,使学生能够运用所学知识解决实际问题,逐步形成数学创新意识,特制定本学科教学计划。

  二、教材内容分析

  本学期数学教材内容包括:第一章《生活中的轴对称》、第二章《勾股定理》、第三章《实数》,第四章《概率的初步认识》,第五章《平面直角坐标系》,第六章《一次函数》, 第七章《二元一次方程组》。

  第一章《生活中的轴对称》的主要内容是研究轴对称图形的性质及其应用。其重点是轴对称图形的性质。

  第二章《勾股定理》的主要内容是:勾股定理的探索和应用。其中勾股定理的应用是本章教学的重点。

  第三章《实数》主要内容是平方根、立方根的概念和求法,实数的概念和运算。本章的内容虽然不多,但在初中数学中占有十分重要的地位。本章的教学重点是平方根和算术平方根的概念和求法,教学难点是算术平方根和实数两个概念的理解。

  第四章《概率的初步认识》主要内容是通过可能性的大小认识概率,并进行简单的概率计算。概率计算是本章教学的重点。

  第五章《平面直角坐标系》主要讲述平面直角坐标系中点的确定,会找出一些点的坐标。

  第六章《一次函数》的主要内容是介绍函数的概念,以及一次函数的图像和表达式,学会用一次函数解决一些实际问题。其中一次函数的图像的表达式是本章的重点和难点。

  第七章《二元一次方程组》要求学会解二元一次方程组,并用二元一次方程组来解一些实际的问题。

  三. 学生情况分析:

  初二(3)班共有学生44人,从上学期期未统计成绩分析,及格人数为 人,优秀人数为 人,这个班的学生中成绩特别差的比较多,成绩提高的难度较大。从上学期期末统测成绩来看,成绩最好是 分,差的 分,这些同学在同一个班里,好的同学要求老师讲得精深一点,差的要求讲浅显一点,一个班没有相对较集中的分数段,从几分到 多分每个分数段的人数都差不多,这就给教学带来不利因素。

  四、.教学目标

  第一章 生活中的轴对称 1.在丰富的现实情境中,经历观察折叠剪纸图形欣赏与设计等数学活动过程,进一步发展空间观念。2.通过丰富的生活实例认识轴对称,探索它的基本性质,理解对应点所连的线段被对称轴垂直平分的性质。3探索并了解基本图形的轴对称性及其相关性质。4能够按要求作出简单平面图形经过轴对称后的图形;探索简单图形之间的轴对称关系,并能指出对称轴。5欣赏现实生活中的轴对称图形,能利用轴对称进行一些图案设计,体验轴对称在现实生活中的广泛应用和丰富的 文化 价值。

  第二章 勾股定理 1经历探索勾股定理及一个三角形是直角三角形的条件的过程,发展合情推理能力,体会数形结合的思想。2掌握勾股定理,了解利用拼图验证勾股定理的方法,能运用勾股定理解决一些实际问题。3掌握判断一个三角形是直角三角形的条件,并能运用它解决一些实际问题。4通过实例了解勾股定理的历史和应用,体会勾股定理的文化价值。

  第三章 实数 1让学生经历数系扩张探求实数性质及其运算规律的过程;从事借助计算器探索数学规律的活动,发展学生的抽象概括能力,并在活动中进一步发展学生独立思考合作交流的意识和能力。2结合具体情境,让学生理解估算的意义,掌握估算的方法,发展学生的数感和估算能力。3了解平方根立方根实数及其相关概念;会用根号表示并会求数的平方根立方根;能进行有关实数的简单运算。4能运用实数的运算解决简单的实际问题,提高学生的应用意识,发展学生解决问题的能力,从中体会数学的应用价值。

  第四章 概率的初步认识 1经历“猜测——验证并收集实验数据——分析实验结果”的活动过程。2了解必然事件,不可能事件和不确定事件发生的可能性大小,了解事件发生的可能性及游戏规则的公平性;了解概率的意义,体会概率是描述不确定现象的数学模型,发展随机观念。3能对两类事件发生的概率进行简单的计算,并能设计符合要求的简单概率模型。4进一步体会数学就在我们身边,发展用数学的意识和能力。

  第五章 平面直角坐标系 1从事对现实世界中确定位置的现象进行观察分析抽象和概括活动,经历探索图形坐标变化与图形形状变化之间关系的过程,进一步发展学生的数形结合意识形象思维能力和数学应用能力。2认识并能画出平面直角坐标系;在给定的直角坐标系中,会根据坐标描出点的位置,由点的位置写出它的坐标。3能在方格纸上建立适当的直角坐标系,描述物体的位置;能结合具体情境灵活运用多种方式确定物体的位置。4在同一直角坐标系中,感受图形变化后点的坐标的变化合格点坐标变化后图形的变化。

  第六章 一次函数 1经历函数一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的 抽象思维 能力;经历一次函数的图像及其性质的探索过程,在合作与交流活动中发展学生的合作意识和能力。2经历利用一次函数及其图像解决实际问题的过程,发展学生的数学应用能力;经历函数图像信息的识别与应用过程,发展学生的形象思维能力。3初步理解函数的概念;理解一次函数及其图像的有关性质;初步体会方程和函数的关系。4能根据所给信息确定一次函数表达式;会做一次函数图象,并利用它们解决简单的实际问题。

  第七章 二元一次方程组 1经历从实际问题中抽象出二元一次方程组的过程,体会方程的模型思想,发展学生灵活运用有关知识解决实际问题的能力,培养良好的数学应用意识。2了解二元一次方程组的有关概念,会解简单的二元一次方程组;能根据具体问题中的数量关系,列出二元一次方程组解决简单的实际问题,并能检验解的合理性。3了解二元一次方程组的图像解法,初步体会方程与函数的关系。4了解二元一次方程组的消元思想,从而初步理解化未知为已知和化复杂问题为简单问题的化归思想。

  五、教学 措施 及方法

  1、理论学习:

  抓好 教育 理论特别是最新的教育理论的学习,及时了解课改信息和课改动向,转变教学观念,形成新课教学思想,树立现代化、科学化的教育思想。多听听课,向 其它 老师借签学习一些优秀的教学方法和教学技巧。

  2、做好各时期的计划:

  为了搞好教学工作,以课程改革的思想为指导,根据学校的工作安排以及初二的数学教学任务和内容,做好学期教学工作的总体计划和安排,并且对各单元、各课题的进度情况进行详细计划。

  3、备好每堂课

  认真钻研大纲和教材,做好初中各阶段的总体备课工作,对总体教学情况和各单元、专题做到心中有数,备好学生的学习和对知识的掌握情况,写好每节课的教案为上好课提供保证,做好课后 反思 和课后总结工作,以不为提高自己的教学理论水平和教学实践能力。

  4、做好课堂教学

  创设教学情境,激发学习兴趣,爱因斯曾经说过:“兴趣是最好的老师。”激发学生的学习兴趣,是数学教学过程中提高质量的重要手段之一。结合教学内容,选一些与实际联系紧密的数学问题让学生去解决,教学组织合理,教学内容语言生动。相尽各种办法让学生爱听、乐听,以全面提高课堂教学质量。成立学习小组,实行组内帮辅和小组间竞争,增强学生学习的信心及自学能力。注重双基和学法指导。积极应用尝试教学法及其他新的教学方法和先进的教学手段。

  5、批改作业

  精批细改好每一位学生的每份作业,学生的作业缺陷,师生都心中有数。对每位同学的作业订正和掌握情况都尽力做到及时反馈,再次批改,让学生获得了一个较好的巩固机会。

  6、做好课外辅导

  全面关心学生,这是老师的神圣职责,在课后能对学进行针对性的辅导,解答学生在理解教材与具体解题中的困难,指导课外阅读因材施教,使优生尽可能 “吃饱”,获得进一步提高;使差生也能及时扫除学生障碍,增强学生信心,尽可能“吃得了”。积极开展数学讲座,课外兴趣小组等课外活动。充分调动学生学习数学的积极性,扩大他们的知识视野,发展智力水平,提高分析问题与解决问题的能力。

  六、本学期教学进度计划

  第一章《生活中的轴对称》9课时

  第二章《勾股定理》5课时

  第三章《实数》10课时

  第四章《概率的初步认识》5课时

  第五章《平面直角坐标系》。8课时

  第六章《一次函数》9课时

  第七章《二元一次方程组》9课时

  总复习2课时
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式