「Mysql索引原理(七)」覆盖索引
通常大家都会根据查询的WHERE条件来创建合适的索引,不过这只是索引优化的一个方面。设计优秀的索引应该考虑到整个查询,而不单单是WHERE条件部分。索引确实是一种查找数据的高效方式,但是MySQL也可以使用索引来直接获取列的数据,这样就不再需要读取数据行。如果索引的叶子节点中已经包含要查询的数据,那么还有什么必要再回到表中查询呢? 如果一个索引覆盖所有需要查询的字段的值,我们就称之为“覆盖索引”。
覆盖索引是非常有用的工具,能够极大地提高性能:
在所有这些场景中,在索引中满足查询的成本一般比查询行要小得多。
不是所有类型的索引都可以成为覆盖索引。覆盖索引必须要存储索引列的值,而哈希索引、空间索引和全文索引都不存储索引列的值,所以MySQL只能使用B+Tree索引所覆盖索引。另外,不同的存储引擎实现覆盖索引的方式也不同,而且不是所有的引擎都支持覆盖索引。
当发起一个呗索引覆盖的查询是,在EXPLAIN的Extra列可以看到“Using index”的信息。
如: explain select col1 from layout_test where col2=99
索引覆盖查询还有很多陷阱可能会导致无法实现优化。MySQL查询优化器会在执行查询前判断是否有一个索引能进行覆盖。假设索引覆盖了wehre条件中的字段,但不是整个查询涉及的字段。mysql5.5和更早的版本也总是会回表获取数据行,尽管并不需要这一行且最终会被过滤掉。
如: EXPLAIN select * from people where last_name='Allen' and first_name like '%Kim%'
这里索引无法覆盖该查询,有两个原因:
这条语句只检索1行,而之前的 like '%Kim%'要检索3行。
也有办法解决上面所说的两个问题,需要重写查询并巧妙设计索引。
这种方式叫做延迟关联,因为延迟了对列的访问。在查询第一个阶段MySQL可以使用覆盖索引,因为索引包含了主键id的值,不需要做二次查找。
在FROM子句的子查询中找到匹配的id,然后根据这些id值在外层查询匹配获取需要的所有列值。虽然无法使用索引覆盖整个查询,但总算比完全无法利用索引覆盖的好吧。
数据量大了怎么办?
这样优化的效果取决于WHERE条件匹配返回的行数。假设这个people表有100万行,我们看一下上面两个查询在三个不同的数据集上的表现,每个数据集都包含100万行。
实例1中 ,查询返回了一个很大的结果集,因此看不到优化的效果。大部分时间都花在读取和发送数据上了。
实例2中 ,经过索引过滤,尤其是第二个条件过滤后只返回了很少的结果集,优化的效果非常明显:在这个数据及上性能提高了很多,优化后的查询效率主要得益于只需读取40行完整数据行,而不是原查询中需要的30000行。
实例3中 ,子查询效率反而下降。因为索引过滤时符合第一个条件的结果集已经很小了,所以子查询带来的成本反而比从表中直接提取完整行更高。
在大多数存储引擎中,覆盖索引只能覆盖那些只访问索引中部分列的查询。不过,可以更进一步优化InnoDB。回想一下,InnoDB的二级索引的叶子节点都包含了主键的值,这意味着InnoDB的二级索引可以有效地利用这些额外的主键列来覆盖查询。
例如,people表中last_name字段有一个二级索引,虽然该索引的列不包括主键id,但也能够用于对id做覆盖查询:
select id,last_name from people where last_name='hua'