
证明:(2的n次方+3的n次方)再开n次方的极限=3
1个回答
展开全部
原式=lim{n→+∞}{(2^n+3^n)^(1/n)}=lim{n→+∞}{e^[(1/n)ln(2^n+3^n)]}=lim{n→+∞}{e^[(1/n)ln[3^n((2/3)^n+1)]]}=lim{n→+∞}{e^[(1/n)[ln3^n+ln((2/3)^n+1)]}=lim{n→+∞}{e^[(1/n)[ln3^n+ln1]}=lim{n→+∞}{e^[...
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询