已知A是n阶矩阵,且满足方程A2+2A=0, 证明A的特征值只能是0或-2. 我来答 1个回答 #热议# 网上掀起『练心眼子』风潮,真的能提高情商吗? 户如乐9318 2022-05-26 · TA获得超过6669个赞 知道小有建树答主 回答量:2559 采纳率:100% 帮助的人:141万 我也去答题访问个人页 关注 展开全部 证明:设a是A的特征值, 则 a^2+2a 是 A^2+2A 的特征值 而 A^2+2A =0,零矩阵的特征值只能是0 所以 a^2+2a = 0 所以 a(a+2)=0 所以 a=0 或 a=-2 即A的特征值只能是0或-2. 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: