如何解一元二次方程

 我来答
郏湛颖嘉子
2022-08-09 · TA获得超过3万个赞
知道大有可为答主
回答量:1.1万
采纳率:31%
帮助的人:608万
展开全部
过最好的是记住根号2,根号3,根号5等一些数值的值
因为很多数值都可以分解成这些数的乘积形式
[解题过程]
述求平方根的方法,称为笔算开平方法,用这个方法可以求出任何正数的算术平方根,它的计算步骤如下:
1.将被开方数的整数部分从个位起向左每隔两位划为一段,用撇号分开(竖式中的11'56),分成几段,表示所求平方根是几位数;
2.根据左边第一段里的数,求得平方根的最高位上的数(竖式中的3);
3.从第一段的数减去最高位上数的平方,在它们的差的右边写上第二段数组成第一个余数(竖式中的256);
4.把求得的最高位数乘以20去试除第一个余数,所得的最大整数作为试商(3×20除
256,所得的最大整数是
4,即试商是4);
5.用商的最高位数的20倍加上这个试商再乘以试商.如果所得的积小于或等于余数,试商就是平方根的第二位数;如果所得的积大于余数,就把试商减小再试(竖式中(20×3+4)×4=256,说明试商4就是平方根的第二位数);
6.用同样的方法,继续求平方根的其他各位上的数.
徒手开n次方根的方法:
原理:设被开方数为x,开n次方,设前一步的根的结果为a,现在要试根的下一位,设为b,
则有:(10*a+b)^n-(10*a)^n<=c(前一步的差与本段合成);且b取最大值
用纯文字描述比较困难,下面用实例说明:
我们求
2301781.9823406
的5次方根:
第1步:将被开方的数以小数点为中心,向两边每隔n位分段(下面用'表示);不足部分在两端用0补齐;
23'01781.98234'06000'00000'00000'..........
从高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,条件:(10*a+b)^n-(10*a)^n<=c,即b^5<=23,且为最大值;显然b=1
差c=23-b^5=22,与下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(计算机语言赋值语句写作a=10*a+b),找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:(10+b)^5-10^5<=2201781,
b取最大值8,差c=412213,与下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:(180+b)^5-180^5<=41221398234,
b取最大值7
说明:这里可使用近似公式估算b的值:
当10*a>>b时,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;与下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:
(1870+b)^5-1870^5<=150880852706000,
b取最大值2,差c=28335908584368;与下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一个b,
条件:(10*a+b)^n-(10*a)^n<=c,即:
(18720+b)^5-18720^5<=2833590858436800000,
b取最大值4,差c=376399557145381376;与下一段合成,
c=c*10^5+下一段=37639955714538137600000
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式