复合函数的单调性怎么判断?
1个回答
展开全部
复合函数的单调性一般是看函数包含的两个函数的单调性。
(1)如果两个都是增的,那么函数就是增函数。
(2)一个是减一个是增,那就是减函数。
(3)两个都是减,那就是增函数。
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠Ø,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(composite function),记为:y=f[g(x)],其中x称为自变量,u为中间变量,y为因变量(即函数)。
扩展资料:
求函数的定义域主要应考虑以下几点:
⑴当为整式或奇次根式时,R的值域;
⑵当为偶次根式时,被开方数不小于0(即≥0);
⑶当为分式时,分母不为0;当分母是偶次根式时,被开方数大于0;
⑷当为指数式时,对零指数幂或负整数指数幂,底不为0(如,中)。
⑸当是由一些基本函数通过四则运算结合而成的,它的定义域应是使各部分都有意义的自变量的值组成的集合,即求各部分定义域集合的交集。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询