二阶导数的意义

 我来答
小么社会生活说
2022-11-21 · TA获得超过1204个赞
知道大有可为答主
回答量:6182
采纳率:100%
帮助的人:89.5万
展开全部

二阶导数的意义如下:

1、切线斜率变化的速度,表示的是一阶导数的变化率。

2、函数的凹凸性(例如加速度的方向总是指向轨迹曲线凹的一侧)。

二阶导数,是原函数导数的导数,将原函数进行二次求导。

一般的,函数y=f(x)的导数y‘=f’(x)仍然是x的函数,则y’=f’(x)的导数叫做函数y=f(x)的二阶导数。在图形上,它主要表现函数的凹凸性。

二阶导数的性质:

1、如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么对于区间I上的任意x,y,总有:

f(x)+f(y)≥2f[(x+y)/2],如果总有f''(x)<0成立,那么上式的不等号反向。

几何的直观解释:如果一个函数f(x)在某个区间I上有f''(x)(即二阶导数)>0恒成立,那么在区间I上f(x)的图象上的任意两点连出的一条线段,这两点之间的函数图象都在该线段的下方,反之在该线段的上方。

2、结合一阶、二阶导数可以求函数的极值。当一阶导数等于0,而二阶导数大于0时,为极小值点。当一阶导数等于0,而二阶导数小于0时,为极大值点;当一阶导数和二阶导数都等于0时,为驻点。

3、函数凹凸性。

设f(x)在[a,b]上连续,在(a,b)内具有一阶和二阶导数,那么,

(1)若在(a,b)内f''(x)>0,则f(x)在[a,b]上的图形是凹的;

(2)若在(a,b)内f’‘(x)<0,则f(x)在[a,b]上的图形是凸的。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式