线性回归方程是如何求得的?

 我来答
帐号已注销
2022-09-24 · TA获得超过77万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:162万
展开全部

线性回归都可以通过最小二乘法求出其方程,可以计算出对于y=bx+a的直线。

拟合是推求一个函数表达式y=f(x)来描述y和x之间的关系,一般用最小二乘法原理来计算。用直线来拟合时,可以叫一次曲线拟合,虽然有点别扭;用二次函数来拟合时,可以叫抛物线拟合或二次曲线拟合,但不能说线性回归。

用直线(y=ax+b)拟合时,得到的方程和一元线性回归分析得到的方程是一样的,但是拟合时可以人为指定函数参数形式,如b=0,而线性回归分析目的则侧重于描述y和x线性相关的程度,通常会同时计算相关系数、F检验值等统计参数。

求解方法

线性回归模型经常用最小二乘逼近来拟合,但他们也可能用别的方法来拟合,比如用最小化“拟合缺陷”在一些其他规范里(比如最小绝对误差回归),或者在回归中最小化最小二乘损失函数的乘法。相反,最小二乘逼近可以用来拟合那些非线性的模型。因此,尽管最小二乘法和线性模型是紧密相连的,但他们是不能划等号的。

以上内容参考:百度百科-线性回归方程

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式