主成分分析的基本思想

 我来答
毒爱M9
2022-11-30 · TA获得超过588个赞
知道小有建树答主
回答量:1162
采纳率:100%
帮助的人:27.7万
展开全部

主成分分析的基本思想是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。

主成分分析(Principal Component Analysis,PCA), 是一种统计方法。通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。

在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。

历史:

1846年,Bracais提出的旋转多元正态椭球到“主坐标”上,使得新变量之间相互独立。皮尔逊(Pearson)(1901)、霍特林(Hotelling)(1933)都对主成分的发展做出了贡献,霍特林的推导模式被视为主成分模型的成熟标志。主成分分析被广泛应用于区域经济发展评价,服装标准制定,满意度测评,模式识别,图像压缩等许多领域。

杭州亦博
2024-12-03 广告
(1)宏观经济政策:包括财政、货币、税务政策,对所处行业的扶持或者限制政策(2)社会状况:包括社会的消费习惯或趋势,人口数量及年龄结构分布的变化,主要客户群体状况(3)技术因素:所处行业技术发展状况,技术的可替代性,最新的技术趋势(4) 行... 点击进入详情页
本回答由杭州亦博提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式