因数个数定理

 我来答
的之梦e
2022-12-02 · TA获得超过118个赞
知道小有建树答主
回答量:548
采纳率:100%
帮助的人:8.4万
展开全部

约数个数定理:

对于一个大于1正整数n可以分解质因数:

则n的正约数的个数就是

其中a1、a2、a3…ak是p1、p2、p3,…pk的指数。

首先同上,n可以分解质因数:n=p1^a1×p2^a2×p3^a3*…*pk^ak,

由约数定义可知p1^a1的约数有:p1^0, p1^1, p1^2......p1^a1 ,共(a1+1)个;同理p2^a2的约数有(a2+1)个......pk^ak的约数有(ak+1)个。

故根据乘法原理:n的约数的个数就是(a1+1)(a2+1)(a3+1)…(ak+1)。

扩展资料

求法:

1、枚举法

枚举法:将两个数的因数分别一一列出,从中找出其公因数,再从公因数中找出最大的一个,即为这两个数的最大公因数。

2、短除法

短除符号就像一个倒过来的除号,短除法就是先写出要求最大公因数的两个数A、B,再画一个短除号,接着在原本写除数的位置写两个数公有的质因数Z(通常从最小的质数开始)。

然后在短除号的下方写出这两个数被Z整除的商a,b,对a,b重复以上步骤,以此类推,直到最后的商互质为止,再把所有的除数相乘,其积即为A,B的最大公因数。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式