怎么求x的三次方

 我来答
麴绣钟书琴
2022-10-18 · TA获得超过1072个赞
知道小有建树答主
回答量:1840
采纳率:100%
帮助的人:8.6万
展开全部
x^3
+px
+
q
=
0
的通解是:
x1
=
(
-q/2
+
(
(q/2)^2
+
(p/3)^3
)^(1/2)
)^(1/3)
+
(
-q/2
-
(
(q/2)^2
+
(p/3)^3
)^(1/2)
)^(1/3)
;
x2
=
m
*
(
-q/2
+
(
(q/2)^2
+
(p/3)^3
)^(1/2)
)^(1/3)
+
m^2
*
(
-q/2
-
(
(q/2)^2
+
(p/3)^3
)^(1/2)
)^(1/3)
;
x3
=
m^2
*
(
-q/2
+
(
(q/2)^2
+
(p/3)^3
)^(1/2)
)^(1/3)
+
m
*
(
-q/2
-
(
(q/2)^2
+
(p/3)^3
)^(1/2)
)^(1/3)
;
其中:m
=
(
-1
+
i
*
3^(1/2)
)/2
,
m^2
=
(
-1
-
i
*
3^(1/2)
)/2
而三次方程的一般形式:
ax^3
+
bx^2
+
cx
+
d
=
0
两边除以a,后设
x
=
y
-
b/3a,就可以化成
y^3
+
py
+
q
=
0
的形式:
p
=
c/a
-
b^2/(3*a^2),
q
=
(2*b^3)/(27*a^3)
-
(c*b)/(3*a^2)
+
d/a
;
然后再用上面的公式就行了。其中x1肯定是实根。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式