设向量组a1,a2,a3线性无关.证明向量组a1+a3,a1-2a3,a2+a3也与线性无关
展开全部
k1(a1+a3)+k2(a1-2a3)+k3(a2+a3)=0
=> (k1+k2)a1+k3a2+(k1-2k2+k3)a3=0
=> k1+k2=0 (1) and
k3=0 (2) and
k1-2k2+k3=0 (3)
from (3) and (2)
k1-2k2 = 0 (4)
(1)-(4)
3k2=0
=> k2 =0
from (1)
=> k3=0
=> a1+a3,a1-2a3,a2+a3线性无关
=> (k1+k2)a1+k3a2+(k1-2k2+k3)a3=0
=> k1+k2=0 (1) and
k3=0 (2) and
k1-2k2+k3=0 (3)
from (3) and (2)
k1-2k2 = 0 (4)
(1)-(4)
3k2=0
=> k2 =0
from (1)
=> k3=0
=> a1+a3,a1-2a3,a2+a3线性无关
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询