定积分∫[-1,1]dx/[1+2^(1/x)],
1个回答
展开全部
Let x = - y、dx = - dy
N = ∫(- 1→1) 1/[1 + 2^(1/x)] dx
= ∫(1→- 1) 1/[1 + 2^(- 1/y)] * (- dy)
= ∫(- 1→1) 1/[1 + 2^(- 1/x)] dx
= ∫(- 1→1) 1/[1 + 1/2^(1/x)] dx
= ∫(- 1→1) 2^(1/x)/[2^(1/x) + 1] dx = N
∵
N + N = ∫(- 1→1) 1/[1 + 2^(1/x)] dx + ∫(- 1→1) 2^(1/x)/[2^(1/x) + 1] dx
2N = ∫(- 1→1) [1 + 2^(1/x)]/[1 + 2^(1/x)] dx = ∫(- 1→1) dx = 2
→ N = 1
∴∫(- 1→1) 1/[1 + 2^(1/x)] dx = 1
N = ∫(- 1→1) 1/[1 + 2^(1/x)] dx
= ∫(1→- 1) 1/[1 + 2^(- 1/y)] * (- dy)
= ∫(- 1→1) 1/[1 + 2^(- 1/x)] dx
= ∫(- 1→1) 1/[1 + 1/2^(1/x)] dx
= ∫(- 1→1) 2^(1/x)/[2^(1/x) + 1] dx = N
∵
N + N = ∫(- 1→1) 1/[1 + 2^(1/x)] dx + ∫(- 1→1) 2^(1/x)/[2^(1/x) + 1] dx
2N = ∫(- 1→1) [1 + 2^(1/x)]/[1 + 2^(1/x)] dx = ∫(- 1→1) dx = 2
→ N = 1
∴∫(- 1→1) 1/[1 + 2^(1/x)] dx = 1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询