已知函数f(x)=e^x-x 求证f(1/2)+f(1/3)+f(1/4)...>n+n/4(n+2)

 我来答
舒适还明净的海鸥i
2022-08-25 · TA获得超过1.7万个赞
知道小有建树答主
回答量:380
采纳率:0%
帮助的人:68.7万
展开全部
此原题应为已知函数f(x)=e^x-x,求证:f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+n/4(n+2)
证明如下:
利用求导的方法,容易证明:f(x)=e^x-x >1+x^2/2,所以:f(1/n)>1+(1/n)^/2,此处省略这一步
对此不等式,分别取n=2,3,...n+1,得到n个不等式,并累加,得:
f(1/2)+f(1/3)+f(1/4)...+f[1/(n+1)]>n+(1/2)[(1/4+1/9+1/16+...+1/(n+1)^2]
利用1/n^2>1/n(n+1)=1/n-1/(n+1)对中括号中的部分拆项求和得
(1/4+1/9+1/16+...+1/(n+1)^2]=1/2-1/(n+2)=n/[2(n+2)],将此结果代入上面不等式,即可得证
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式