小红和小力各有8、2、5三张数字卡片,每人拿出一?
一共有9种不同的拿法。
分析过程如下:
小红和小力各有8、2、5三张数字卡片,每人拿出一张,可以看成两步。
第一步小红先拿,小红有3种选择。
第二步小力拿,小力也有3种选择。
由此可得:拿法=3×3=9种。分别是:88 82 85 28 22 25 58 52 55。
扩展资料:
加法原理是分类计数原理,常用于排列组合中,具体是指:做一件事情,完成它有n类方式,第一类方式有M1种方法,第二类方式有M2种方法,??,第n类方式有Mn种方法,那么完成这件事情共有M1+M2+??+Mn种方法。
比如说:从武汉到上海有乘火车、飞机、轮船3种交通方式可供选择,而火车、飞机、轮船分别有k1,k2,k3个班次,那么从武汉到上海共有 k1+k2+k3种方式可以到达。
分类计数原理、分步计数原理,回答的都是有关做一件事的不同方法种数的问题。两者区别在于:分类计数原理针对的是“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事。
分步计数原理针对的是“分步”问题,各步骤中的方法相互依存,只有各个步骤都完成才算做完这件事。两个计数原理渗透了“以简驭繁、化难为易”的基本思想。
排列组合计算方法如下:
排列A(n,m)=n×(n-1).(n-m+1)=n!/(n-m)!(n为下标,m为上标,以下同)
组合C(n,m)=P(n,m)/P(m,m) =n!/m!(n-m)!;
例如:
A(4,2)=4!/2!=4*3=12
C(4,2)=4!/(2!*2!)=4*3/(2*1)=6