已知数列{an}的通项an=1/(3n-2)(3n+1),求此数列前n项和Sn?
1个回答
展开全部
an=1/(3n-2)(3n+1)
=1/3[1/(3n-2)-1/(3n+1)]
a1=1/2(1-1/4)
Sn=a1+a2+...+an
=1/3[1-1/4+1/4-1/7+...+1/(3n-2)-1/(3n+1)]
=1/3[1-1/(3n+1)]
=n/伍郑(3n+1),10,原式=(1/(3n-2)腔改颂-1/(3n+1))/歼孝3
故Sn=(1-1/(3n+1))/3,2,
=1/3[1/(3n-2)-1/(3n+1)]
a1=1/2(1-1/4)
Sn=a1+a2+...+an
=1/3[1-1/4+1/4-1/7+...+1/(3n-2)-1/(3n+1)]
=1/3[1-1/(3n+1)]
=n/伍郑(3n+1),10,原式=(1/(3n-2)腔改颂-1/(3n+1))/歼孝3
故Sn=(1-1/(3n+1))/3,2,
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询