计算:2/(x+1)(x+3)+2/(x+3)(x+5)……+2/(x+2013)(x+2015
展开全部
2/[(x+1)(x+3)]+2/[(x+3)(x+5)]+……+2/[(x+2013)(x+2015)]
=[1/(x+1)-1/(x+3)]+[1/(x+3)-1/(x+5)]+……+[1/(x+2013)-1/(x+2015)]
=1/(x+1)-1/(x+3)+1/(x+3)-1/(x+5)+……+1/(x+2013)-1/(x+2015)
=1/(x+1)-1/(x+2015)
=[(x+2015)-(x+1)]/[(x+1)(x+2015)]
=2014/[(x+1)(x+2015)]
=[1/(x+1)-1/(x+3)]+[1/(x+3)-1/(x+5)]+……+[1/(x+2013)-1/(x+2015)]
=1/(x+1)-1/(x+3)+1/(x+3)-1/(x+5)+……+1/(x+2013)-1/(x+2015)
=1/(x+1)-1/(x+2015)
=[(x+2015)-(x+1)]/[(x+1)(x+2015)]
=2014/[(x+1)(x+2015)]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询