杨氏模量的结论与分析
杨氏模量的结论与分析如下:
杨氏模量是描述固体材料抵抗形变能力的物理量。当一条长度为L、截面积为S的金属丝在力F作用下伸长ΔL时,F/S叫应力,其物理意义是金属丝单位截面积所受到的力;ΔL/L叫应变,其物理意义是金属丝单位长度所对应的伸长量。应力与应变的比叫弹性模量。
类似于弹簧中的F=kx,弹簧的数量相当于材料横截面积A,杨氏模量考虑的是材料伸长量(一般考虑伸长)与原长度的比值,得到F/A=Y△l/l 其中l为材料原长,F/A被称为应力,单位一般为mpa,△l/l称为应变。由于Y是线性范围内(弹性范围)的求得的,所以Y也写作E(elastic弹性的)。
杨氏模量衡量的是一个各向同性弹性体的刚度(stiffness), 定义为在胡克定律适用的范围内,单轴应力和单轴形变之间的比。与弹性模量是包含关系,除了杨氏模量以外,弹性模量还包括体积模量(bulk modulus)和剪切模量(shear modulus)等。
Young's modulus E, shear modulus G, bulk modulus K, 和 Poisson's ratio ν 之间可以进行换算,公式为:E=2G(1+v)=3K(1-2v).
扩展资料
根据不同的受力情况,分别有相应的拉伸弹性模量(杨氏模量)、剪切弹性模量(刚性模量)、体积弹性模量等。它是一个材料常数,表征材料抵抗弹性变形的能力,其数值大小反映该材料弹性变形的难易程度。
对一般材料而言,该值比较稳定,但就高聚物而言则对温度和加载速率等条件的依赖性较明显。对于有些材料在弹性范围内应力-应变曲线不符合直线关系的,则可根据需要可以取切线弹性模量、割线弹性模量等人为定义的办法来代替它的弹性模量值。
2024-04-02 广告