收敛半径的求法
1个回答
展开全部
收敛半径r是一个非负的实数或无穷大,使得在 | z -a| < r时幂级数收敛,在 | z -a| > r时幂级数发散。
具体来说,当 z和 a足够接近时,幂级数就会收敛,反之则可能发散。收敛半径就是收敛区域和发散区域的分界线。在 |z- a| = r的收敛圆上,幂级数的敛散性是不确定的:对某些 z可能收敛,对其它的则发散。如果幂级数对所有复数 z都收敛,那么说收敛半径是无穷大。
计算方法:
如果幂级数中的幂次是按自然数顺序依次递增的,即该级数是不缺项的幂级数,可用两种方法即系数模比值法和系数模根值法求其收敛半径R。如果幂级数中的幂次不是按自然数的顺序依次递增的(比如缺奇次幂或缺偶次幂等)必须直接使用比值审敛法。
因为函数项级数的收敛域其实就是由所有收敛点构成的,而对于每个收敛点对应的函数项级数的收敛性的判定,其实对应的就是常值级数收敛性的判定,所以函数项级数的收敛域的计算一般基于常值级数判定的方法,常用的是基于取项的绝对值的比值审敛法与根值判别法。
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算方案可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询