7.求幂级数_(n=1)^n/(n+1)x^n的收敛域及和函数。
1个回答
展开全部
S(x) = ∑<n=1, ∞> [n/(n+1)]x^n
收敛半径 R = lim<n→∞>a<n>/a<n+1> = lim<n→∞>n(n+2)/(n+1)^2 = 1
x = ±1 时, 级数发散, 收敛域 -1 < x < 1.
S(x) = ∑<n=1, ∞> [n/(n+1)]x^n = ∑<n=1, ∞> [(n+1-1)/(n+1)]x^n
= ∑<n=1, ∞>x^n - ∑<n=1, ∞> [1/(n+1)]x^n
x ≠ 0 时
S(x) = x/(1-x) - (1/x)∑<n=1, ∞> [1/(n+1)]x^(n+1)
记 G(x) = ∑<n=1, ∞> [1/(n+1)]x^(n+1),
则 G'(x) = ∑<n=1, ∞>x^n = x/(1-x) = (x-1+1)/(1-x)= -1 + 1/(1-x)
G(x) = ∫<0, x> G'(t)dt + G(0) = ∫<0, x> [-1+1/(1-t)]dt + 0
= [-t-ln(1-t)]<0, x> = - x - ln(1-x)
S(x) = x/(1-x) - (1/x)[-x - ln(1-x)] = -1 + 1/(1-x) + 1 + ln(1-x)/x
= 1/(1-x) + ln(1-x)/x, -1 < x < 1.
x = 0 时 , S(x) = 0。
收敛半径 R = lim<n→∞>a<n>/a<n+1> = lim<n→∞>n(n+2)/(n+1)^2 = 1
x = ±1 时, 级数发散, 收敛域 -1 < x < 1.
S(x) = ∑<n=1, ∞> [n/(n+1)]x^n = ∑<n=1, ∞> [(n+1-1)/(n+1)]x^n
= ∑<n=1, ∞>x^n - ∑<n=1, ∞> [1/(n+1)]x^n
x ≠ 0 时
S(x) = x/(1-x) - (1/x)∑<n=1, ∞> [1/(n+1)]x^(n+1)
记 G(x) = ∑<n=1, ∞> [1/(n+1)]x^(n+1),
则 G'(x) = ∑<n=1, ∞>x^n = x/(1-x) = (x-1+1)/(1-x)= -1 + 1/(1-x)
G(x) = ∫<0, x> G'(t)dt + G(0) = ∫<0, x> [-1+1/(1-t)]dt + 0
= [-t-ln(1-t)]<0, x> = - x - ln(1-x)
S(x) = x/(1-x) - (1/x)[-x - ln(1-x)] = -1 + 1/(1-x) + 1 + ln(1-x)/x
= 1/(1-x) + ln(1-x)/x, -1 < x < 1.
x = 0 时 , S(x) = 0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询