向量组的等价例题_矩阵等价与向量组等价的关系
展开全部
矩阵等价与向量组等价的关系
矩阵是指排成n行m列的一个数表。在线性代数中矩阵是一个重要而有力的工具,应用于线性代数的始末,与线性代数的每一章节内容都有牵连。
向量是一个数组。如果向量仅有一个分量,它就是通常意义上的数;如果向量的分量有两个或三个,在解析几何中,它表示平面或空间的有向线段。在几何上与线性代数中向量的运算具有相同或相应的法则。向量可以作为特殊的矩阵,也可作为矩阵的一部分。n个m维列向量组成的向量组即可作成一个m×n矩阵。
所以矩阵与向量组之间有着千丝万缕的联系。例如矩阵与其行向量组及列向量组均有相同的秩,方阵可逆的充要条件是其行(列)向量组线性无关等。但是矩阵的等价与向量组的等价却没有任何必然的联系!
矩阵等价的定义:如果矩阵A可以经过有限次初等变换成为矩阵B,就称矩阵A与矩阵B等价。矩阵等价的两个充要条件:存在可逆矩阵P、Q,使得PAQ =B;A与B同型,且r(A)=r(B)。
向量组的等价,是指两个向量组能相互线性表示。
矩阵等价与向量组等价有如下关系:
1.两矩阵等价,它们的行向量组与列向量组不一定等价!(《2012考研数学复习大全》理工类338页有说明及具体反例)
2.两个向量组等价,它们作成的矩阵不一定等价!(向量组等价,两向量组中所含向量个数可以不同,但矩阵等价,两矩阵必定具有相同的行数与列数)
在什么情况下矩阵等价其行向量组或列向量组等价呢?
1.若矩阵A经初等列变换成为矩阵B,即存在可逆矩阵Q,使AQ=B,也可以写为 (α1,α2,…,αn)Q=(β1,β2,…,βn),
此时可知B的列向量组可以由A的列向量组线性表示,因为Q为初等矩阵的乘积,所以可逆,对AQ=B两边右乘Q -1,有A=BQ -1,故A的列向量组可以由B的列向量组线性表示。此时可得A的列向量组与B的列向量组等价。
2.同理可知:若矩阵A经初等行变换成为矩阵B,则A的行向量组与B的行向量组等价。
3.矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价!(见《2012考研数学复习大全》理工类312页注)
在什么情况下向量组等价其对应的矩阵也等价呢?
1.若向量组A与向量组B均有n个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A与B等价!(因向量组A与向量组B等价,则它们有相同的秩,又A与B作成的矩阵A与B有相同的行与列,且秩相等,故矩阵A与B等价)
2.要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n个向量的两个m维向量组A与B,才有可能讨论其对应的矩阵A与B是否等价。
矩阵是指排成n行m列的一个数表。在线性代数中矩阵是一个重要而有力的工具,应用于线性代数的始末,与线性代数的每一章节内容都有牵连。
向量是一个数组。如果向量仅有一个分量,它就是通常意义上的数;如果向量的分量有两个或三个,在解析几何中,它表示平面或空间的有向线段。在几何上与线性代数中向量的运算具有相同或相应的法则。向量可以作为特殊的矩阵,也可作为矩阵的一部分。n个m维列向量组成的向量组即可作成一个m×n矩阵。
所以矩阵与向量组之间有着千丝万缕的联系。例如矩阵与其行向量组及列向量组均有相同的秩,方阵可逆的充要条件是其行(列)向量组线性无关等。但是矩阵的等价与向量组的等价却没有任何必然的联系!
矩阵等价的定义:如果矩阵A可以经过有限次初等变换成为矩阵B,就称矩阵A与矩阵B等价。矩阵等价的两个充要条件:存在可逆矩阵P、Q,使得PAQ =B;A与B同型,且r(A)=r(B)。
向量组的等价,是指两个向量组能相互线性表示。
矩阵等价与向量组等价有如下关系:
1.两矩阵等价,它们的行向量组与列向量组不一定等价!(《2012考研数学复习大全》理工类338页有说明及具体反例)
2.两个向量组等价,它们作成的矩阵不一定等价!(向量组等价,两向量组中所含向量个数可以不同,但矩阵等价,两矩阵必定具有相同的行数与列数)
在什么情况下矩阵等价其行向量组或列向量组等价呢?
1.若矩阵A经初等列变换成为矩阵B,即存在可逆矩阵Q,使AQ=B,也可以写为 (α1,α2,…,αn)Q=(β1,β2,…,βn),
此时可知B的列向量组可以由A的列向量组线性表示,因为Q为初等矩阵的乘积,所以可逆,对AQ=B两边右乘Q -1,有A=BQ -1,故A的列向量组可以由B的列向量组线性表示。此时可得A的列向量组与B的列向量组等价。
2.同理可知:若矩阵A经初等行变换成为矩阵B,则A的行向量组与B的行向量组等价。
3.矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价!(见《2012考研数学复习大全》理工类312页注)
在什么情况下向量组等价其对应的矩阵也等价呢?
1.若向量组A与向量组B均有n个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A与B等价!(因向量组A与向量组B等价,则它们有相同的秩,又A与B作成的矩阵A与B有相同的行与列,且秩相等,故矩阵A与B等价)
2.要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n个向量的两个m维向量组A与B,才有可能讨论其对应的矩阵A与B是否等价。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询