如何理解泰勒公式?
解题过程如下图:
泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够光滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。
扩展资料
泰勒公式(Taylor's formula)
形式1:带Peano余项的Taylor公式:
若f(x)在x0处有n阶导数,则存在x0的一个邻域(x0-δ,x0+δ)内任意一点x(δ>0),成立下式:
f(x)=f(x0)+f'(x0)/1!*(x-x0)+f''(x0)/2!*(x-x0)^2+…+f(n) (x0)/n!(x-x0)^n+o((x-x0)^n)
f(n)(x)表示f(x)的n阶导数,f(n) (x0)表示f(n)(x)在x0处的取值
(可以反复使用L'Hospital法则来推导)
形式2::带Lagrange余项的Taylor公式:
若 函数f(x)在闭区间[a,b]上有n阶连续 导数,在(a,b)上有n+1阶导数。任取x0∈[a,b]是一定点,则对任意x∈[a,b]成立下式:
f(x)=f(x。)+f'(x。)(x-x。)+f''(x。)/2!*(x-x。)^2,+f'''(x。)/3!*(x-x。)^3+……+f(n)(x。)/n!*(x-x。)^n+Rn(x),
Rn(x)=f(n+1)(ξ)/(n+1)!*(x-x。)^(n+1), ξ在x。和x之间,是依赖于x的量。
(注:f(n)(x。)是f(x。)的n阶导数,不是f(n)与x。的相乘。)
2023-07-25 广告