设f具有连续偏导数,方程z=f(xz,z-y)确定z是x,y的函数,求∂z ∂x,∂z ∂y
1个回答
展开全部
【答案】:x=f(xz,yz)两边对x求导:
1=f1(z+x∂z/∂x)+f2(y∂z/∂x) ∂z/∂x=(1-zf1)/(xf1+yf2)
x=f(xz,yz)两边对y求导:
0=f1(x∂z/∂y)+f2(z+y∂z/∂y) ∂z/∂y=(-zf2)/(xf1+yf2)
dz=[(1-zf1)/(xf1+yf2)]dx+[(-zf2)/(xf1+yf2)]dy
1=f1(z+x∂z/∂x)+f2(y∂z/∂x) ∂z/∂x=(1-zf1)/(xf1+yf2)
x=f(xz,yz)两边对y求导:
0=f1(x∂z/∂y)+f2(z+y∂z/∂y) ∂z/∂y=(-zf2)/(xf1+yf2)
dz=[(1-zf1)/(xf1+yf2)]dx+[(-zf2)/(xf1+yf2)]dy
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询