高数曲线积分,格林公式?

证明题... 证明题 展开
 我来答
新缘12138
2023-04-17 · 超过13用户采纳过TA的回答
知道答主
回答量:92
采纳率:100%
帮助的人:4.5万
展开全部

设区域D被曲线L所围成,则根据格林公式有:



$\oint_L (xe-2y)dx + xdy = \iint_D \frac{\partial x}{\partial y}-\frac{\partial (xe-2y)}{\partial x}dxdy = \iint_D 1-0dxdy = S_D$

其中$S_D$表示区域D的面积。

又因为曲线L是封闭的,所以它所围成的区域D也是封闭的。而在D内部取任意一点$(x_0,y_0)$,则可以通过向L内部的任何一条路径进行积分,得到:



$\int_{(x_0,y_0)}^{(x_0,y_0)} (xe-2y)dx + xdy = 0$

又根据路径无关积分的性质,有:

$\int_{(x_0,y_0)}^{(x_0,y_0)} (xe-2y)dx + xdy = \oint_L (xe-2y)dx + xdy = S_D$

因此,有:

$S_D = 0$

即区域D的面积为0,即曲线L是一个点或一条线段。在其中任意一点,$dx$和$dy$同时为0,故原方程成立。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式