怎么用积分法求解
展开全部
∫[0,2π] 2(t-sint)(1-cost)^2 dt
= ∫[0,2π] (1-cost) d(t-sint)^2
= [0,2π] (1-cost) (t-sint)^2 - ∫[0,2π] (t-sint)^2 sint dt
= ∫[0,2π] (t-sint)^2 dcost
= [0,2π] (t-sint)^2 cost - ∫[0,2π] cost 2(t-sint)(1-cost) dt
= 4π^2 - ∫[0,2π] cost 2(t-sint)(1-cost) dt (第二项展开后对各项分别求积分)
= 4π^2 + 2π^2
= 6π^2
= ∫[0,2π] (1-cost) d(t-sint)^2
= [0,2π] (1-cost) (t-sint)^2 - ∫[0,2π] (t-sint)^2 sint dt
= ∫[0,2π] (t-sint)^2 dcost
= [0,2π] (t-sint)^2 cost - ∫[0,2π] cost 2(t-sint)(1-cost) dt
= 4π^2 - ∫[0,2π] cost 2(t-sint)(1-cost) dt (第二项展开后对各项分别求积分)
= 4π^2 + 2π^2
= 6π^2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询