齐次方程怎么求通解?
1个回答
展开全部
一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式应用“常数变易法”求解。
解:∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数)。
解:∵由齐次方程dy/dx+P(x)y=0
==>dy/dx=-P(x)y
==>dy/y=-P(x)dx
==>ln│y│=-∫P(x)dx+ln│C│ (C是积分常数)
==>y=Ce^(-∫P(x)dx)
∴此齐次方程的通解是y=Ce^(-∫P(x)dx)
于是,根据常数变易法,设一阶线性微分方程dy/dx+P(x)y=Q(x)的解为
y=C(x)e^(-∫P(x)dx) (C(x)是关于x的函数)
代入dy/dx+P(x)y=Q(x),化简整理得
C'(x)e^(-∫P(x)dx)=Q(x)
==>C'(x)=Q(x)e^(∫P(x)dx)
==>C(x)=∫Q(x)e^(∫P(x)dx)dx+C (C是积分常数)
==>y=C(x)e^(-∫P(x)dx)=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx)
故一阶线性微分方程dy/dx+P(x)y=Q(x)的通解公式是
y=[∫Q(x)e^(∫P(x)dx)dx+C]e^(-∫P(x)dx) (C是积分常数)。
呈绅
2024-11-24 广告
2024-11-24 广告
上机1350外圆磨,即MM1350系列精密外圆磨床,是我司热销产品之一。它适用于磨削IT6IT7级精度的圆柱形回转工件的外圆表面,特别适用于单件小批生产的场合。机床工作台纵向移动可由液压无级变速传动或手轮传动,砂轮架横向进给灵活,工件、砂轮...
点击进入详情页
本回答由呈绅提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询