如何计算对弧长的曲线积分?
令x=cost, y=sint。 则ds=根号下{(dx)^2+(dy)^2}=dt。这时积分曲线是圆心在x轴上的点(1,0)、半径为1且与y轴相切(切点是原点)的圆周,参数t的变化范围是-pai/2到pai/2。 于是原积分=2cost在-pai/2到pai/2上的积分=4。
这是第一型曲线积分(即“对弧长的曲线积分”),计算方法是设法化作定积分。
由于积分曲线是圆周,故考虑用圆的参数方程(即取参数t为新的自变量):
注:这里应特别注意:将第一型曲线积分化为定积分时,被积函数与积分曲线密切关联着,作了代换x=cost, y=sint后,从曲线L的方程看,这时x^2+y^2=2cost,代换后的积分的被积函数就是2cost(而不是1 !)。可以简单的理解为:把曲线方程"代入"被积函数。
扩展资料:
在曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。
带有权重是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简单的公式(比如说)在推广之后都是以曲线积分的形式出现曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出现的概率。
2021-01-25 广告