导数为什么等于0?
导数等于0说明函数在这一点的切线斜率为0,既切线平行于x轴,而且函数在这一有极值。如果函数在整个定义域上的导数都为零,那么函数为常量函数。
导数等于0表明该函数可能存在极值点。一阶导数等于0只是有极值的必要条件,不是充分条件,也就是说,有极值的地方,其切线的斜率一定为0;切线斜率为0的地方,不一定是极值点。
几何意义:从几何的角度来讲,函数在某一点的导数就等于过这一点做函数图像的切线,其切线的斜率。因此在一点的导数为0就相当于过这一点的切线斜率为0,斜率为0的直线就是一条水平线。
导数定义介绍:
导数是用来反映函数局部性质的工具。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
寻找已知的函数在某点的导数或其导函数的过程称为求导。实质上,求导就是一个求极限的过程,导数的四则运算法则也来源自于极限的四则运算法则。
反之,已知导函数也可以倒过来求原来的函数,即不定积分。微积分基本定理表明了求原函数与积分是等价的。求导和积分是一对互逆操作,它们都是微积分学中最为基础的概念。
2021-01-25 广告