4个回答
展开全部
1、记x1=√2,x(n+1)=√(2+xn),归纳法可以证明0<xn<2,从而证得{xn}递增,所以xn有极限,设为a,在递推公式两边取极限得a=√(2+a),解得a=2
2、[x]是取整函数吧
x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夹逼准则,x[1/x]→1
x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1) x[1/x]=1
2、[x]是取整函数吧
x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夹逼准则,x[1/x]→1
x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1) x[1/x]=1
展开全部
由题意可得:
记x1=√2,x(n+1)=√(2+xn),归纳法可以证明0<xn<2,从而证得{xn}递增,所以xn有极限,设为a,在递推公式两边取极限得a=√(2+a),解得a=2
又[x]是取整函数
当x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夹逼准则,x[1/x]→1
当x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1) x[1/x]=1
记x1=√2,x(n+1)=√(2+xn),归纳法可以证明0<xn<2,从而证得{xn}递增,所以xn有极限,设为a,在递推公式两边取极限得a=√(2+a),解得a=2
又[x]是取整函数
当x→0+时,1/x≤[1/x]≤1/x+1,所以1≤x[1/x]≤x+1,由夹逼准则,x[1/x]→1
当x→-时,1/x-1≤[1/x]≤1/x,所以1-x≤x[1/x]≤1,由夹逼准则,x[1/x]→1
所以,lim(x→1) x[1/x]=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题是个很经典的题目,学高数的基本上都会遇到这道题目。
1、首先要证明极限存在
A(n)单调升(显然)
用数学归纳法证明A(n)<=2;
根号(2)<=2
根号(2+根号(2))<=根号(2+2)=2
若A(n-1)<=2,则
A(n)=根号(2+A(n-1))<=根号(2+2)=2
然后安一楼的方法来做,即可求得极限
2、1/x-1<=[1/x]<=[1/x]+1
对上式同乘以x,运用夹逼法则即可证出(注意x的收敛方向)
1、首先要证明极限存在
A(n)单调升(显然)
用数学归纳法证明A(n)<=2;
根号(2)<=2
根号(2+根号(2))<=根号(2+2)=2
若A(n-1)<=2,则
A(n)=根号(2+A(n-1))<=根号(2+2)=2
然后安一楼的方法来做,即可求得极限
2、1/x-1<=[1/x]<=[1/x]+1
对上式同乘以x,运用夹逼法则即可证出(注意x的收敛方向)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
第一题:设通项为An,数列极限为S,则A(n+1)平方=An+2,然后对等式两边求极限,可得S平方-S-2=0,解此一元二次方程得S=2(负根舍去)
第二题没看懂什么意思,能不能再编辑一下?
第二题没看懂什么意思,能不能再编辑一下?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询