∫(1+ x)/(x²

 我来答
大鱼说2024
2023-08-09 · 超过21用户采纳过TA的回答
知道答主
回答量:93
采纳率:0%
帮助的人:1.4万
展开全部
要求解不定积分 ∫(1 + x) / (x²) dx,我们可以采用分部积分法。
分部积分法的公式为 ∫u dv = uv - ∫v du,其中 u 和 v 是可微的函数。
在本题中,我们可以令 u = 1 + x,dv = 1/x² dx。
然后,计算 du 和 v:
du = d(1 + x) = dx
v = ∫1/x² dx
对 v 进行积分:
v = ∫1/x² dx = ∫x^(-2) dx = -x^(-1) = -1/x
现在,将 u 和 v 带入分部积分公式:
∫(1 + x) / (x²) dx = (1 + x) * (-1/x) - ∫(-1/x) * dx
= - (1 + x) / x + ∫1/x dx
= - (1 + x) / x + ln|x| + C
其中,C 是常数项。
所以,不定积分 ∫(1 + x) / (x²) dx = - (1 + x) / x + ln|x| + C。
翼腾生物科技有限公司
2024-12-14 广告
AB05PFR2PVH4这一串字符,在我们苏州翼腾生物科技有限公司内部,可能代表着某一特定项目、产品编号或是内部系统的识别码。我们公司作为一家专注于生物科技领域的创新型企业,致力于研发与应用前沿的生物技术。此编码的具体含义,需根据公司的数据... 点击进入详情页
本回答由翼腾生物科技有限公司提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式